• 首页
  • 学院概况
    • 学院简介
    • 学院领导
    • 师资力量
  • 机构设置
    • 决策机构
    • 教学单位
    • 研究机构
    • 条件装备
    • 办事机构
  • 科学研究
    • 科研项目
    • 科研成果
    • 成果转化
    • 学术动态
    • 项目申报
  • 人才培养
    • 本科生教育
    • 研究生教育
  • 招生就业
    • 本科招生
    • 硕士招生
    • 学生就业
  • 学生工作
    • 学生动态
    • 学生党建
    • 奖励工作
  • 党群建设
    • 党建工作
    • 工会工作
    • 学习资料
  • 信息公开
    • 规章制度
    • 办事流程
    • 信息公示
  • 合作交流
    • 学院招聘
    当前位置:
  1. 首页
  2. 科学研究
  3. 学术动态
  4. 正文
科学研究
  • 科研项目
  • 科研成果
  • 成果转化
  • 学术动态
  • 项目申报
Toward Edge General Intelligence with Agentic AI and Agentification
发布时间:2025-09-23
浏览量:

报告题目:Toward Edge General Intelligence with Agentic AI and Agentification

报 告 人:Dusit Niyato, 新加坡南洋理工大学(NTU)计算与数据科学学院 President's Chair Professor

报告时间:2025年9月26日 (星期五) 上午10:00  

报告地点:信息科学与工程学院/网络空间安全学院 624报告厅

邀 请 人:靳文强教授


报告摘要:

The rapid expansion of sixth-generation (6G) wireless networks and the Internet of Things (IoT) has catalyzed the evolution from centralized cloud intelligence towards decentralized edge general intelligence. However, traditional edge intelligence methods, characterized by static models and limited cognitive autonomy, fail to address the dynamic, heterogeneous, and resource-constrained scenarios inherent to emerging edge networks. Agentic artificial intelligence (Agentic AI) emerges as a transformative solution, enabling edge systems to autonomously perceive multimodal environments, reason contextually, and adapt proactively through continuous perception-reasoning-action loops. In this context, the agentification of edge intelligence serves as a key paradigm shift, where distributed entities evolve into autonomous agents capable of collaboration and continual adaptation. This paper presents a comprehensive survey dedicated to Agentic AI and agentification frameworks tailored explicitly for edge general intelligence. First, we systematically introduce foundational concepts and clarify distinctions from traditional edge intelligence paradigms. Second, we analyze important enabling technologies, including compact model compression, energy-aware computing strategies, robust connectivity frameworks, and advanced knowledge representation and reasoning mechanisms. Third, we provide representative case studies demonstrating Agentic AI's capabilities in low-altitude economy networks and intent-driven networking. Furthermore, we identify current research challenges.


报告人简介: Dusit Niyato is currently a President's Chair Professor in the College of Computing & Data Science (CCDS), Nanyang Technological University, Singapore. Dusit's research interests are in the areas of mobile generative AI, edge intelligence, quantum computing and networking, and incentive mechanism design. Currently, Dusit is serving as Editor-in-Chief of IEEE Transactions on Network Science and Engineering (impact factor 7.9). He is also the past Editor-in-Chief and current area editor of IEEE Communications Surveys and Tutorials (impact factor 46.7), the area editor of IEEE Transactions on Vehicular Technology, area editor of IEEE Transactions on Communications, topical editor of IEEE Internet of Things Journal, lead series editor of IEEE Communications Magazine, topic editor of IEEE Transactions on Services Computing, and associate editor of IEEE Transactions on Wireless Communications,. Dusit is the Members-at-Large to the Board of Governors of IEEE Communications Society for 2024-2026. He is a Fellow of IEEE and a Fellow of IET.




下一篇:启发式进化:迈向使用大语言模型的高效自动算法设计(Evolution of Heuristics: Towards Efficient Automated Algorithm Design Using Large Language Models)
常用服务
SERVICE
学院官网
校园地图
校内交通
班车时刻表
常用电话
捐赠
校园一卡通
书记校长信箱
联系我们
CONTACT
地址:湖南省长沙市岳麓区麓山南路麓山门
邮箱:xiaoban@hnu.edu.cn
邮编:410082
版权所有©湖南大学2024 湖南大学网络空间安全学院
版权所有©湖南大学2024 湖南大学网络空间安全学院